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A Kolmogorov-type similarity theory of locally homogeneous and isotropic turbulence 
generated by a Smagorinsky-type large-eddy simulation (LES) at very large LES 
Reynolds numbers is developed and discussed. The underlying concept is that the 
LES equations may be considered equations of motion of specific hypothetical fully 
turbulent non-Newtonian fluids, called ‘LES fluids’. It is shown that the length scale 
ls = csd, which scales the magnitude of the variable viscosity in a Smagorinsky- 
type LES, is the ‘Smagorinsky-fluid’ counterpart of Kolmogorov’s dissipation length 
rj = v 3 / 4 ~ - 1 / 4  for a Newtonian fluid where v is the kinematic viscosity and E is 
the energy dissipation rate. While in a Newtonian fluid the viscosity is a material 
parameter and the length q depends on E ,  in a Smagorinsky fluid the length I S  is 
a material parameter and the viscosity depends on E.  The Smagorinsky coefficient 
cs may be considered the reciprocal of a ‘microstructure Knudsen number’ of a 
Smagorinsky fluid. A combination of Lilly’s (1967) cut-off model with two well- 
known spectral models for dissipation-range turbulence (Heisenberg 1948; Pao 1965) 
leads to models for the LES-generated Kolmogorov coefficient RLES as a function of 
cs. Both models predict an intrinsic overestimation of CXLES for finite values of cs. For 
cs = 0.2 Heisenberg’s and Pao’s models provide RLES = 1.74 (16% overestimation) 
and c~LES = 2.14 (43% overestimation), respectively, if limcs-tJ=(ctLES) = 1.5 is ad hoc 
assumed. The predicted overestimation becomes negligible beyond about cs = 0.5. 
The requirement cs > 0.5 is equivalent to d < 21s. A similar requirement, L < 2q 
where L is the wire length of hot-wire anemometers, has been recommended by 
experimentalists. The value of limcs+sc(xLES) for a Smagorinsky-type LES at very 
large LES Reynolds numbers is not predicted by the models and remains unknown. 
Two critical values of cs are identified. The first critical cs is Lilly’s (1967) value, 
which indicates the cs below which finite-difference-approximation errors become 
important; the second critical cs is the value beyond which the Reynolds number 
similarity is violated. 

1. Introduction 
The classical theory of homogeneous turbulence (Batchelor 1953) may be considered 

the backbone of the physics of fully developed turbulence. It is the present-day 
view (see, for example, Hunt, Phillips & Williams 1991; Yaglom 1981, 1994) that 
the decisive breakthrough towards modern turbulence physics is to be attributed 
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to Kolmogorov’s (1941u,b) two classical papers. It is important to note, however, 
that Kolmogorov’s similarity theory does not rely on the Navier-Stokes equations. 
Kolmogorov (1941~) did not even mention them. On the other hand, the Navier- 
Stokes equations are widely believed to be the first principles for the physics of fluid 
turbulence, also at high Reynolds numbers, and much work has been done to gain 
insight into Kolmogorov’s turbulence laws from the viewpoint of the Navier-Stokes 
equations, see, for example, McComb (1990). 

Since the advance of supercomputers, it has been possible to leave any turbulence 
theory completely aside and, instead, to straightforward numerically integrate the 
Navier-Stokes equations under the constraint of the external forcing. This approach 
is known as direct numerical simulation (DNS). See, for example, McComb (1990), 
Reynolds (1990) or Chen et al. (1993). DNS is free from any assumption on the 
statistical nature of developed turbulence and, to a certain extent, may be considered 
the numerical counterpart of a laboratory experiment. The DNS technique, however, 
is limited to moderate Reynolds numbers Re since at very high Re as encountered in 
the atmosphere or in the ocean the number of hydrodynamical degrees of freedom is 
far beyond present-day computer capacities. 

A very efficient technique to reduce the numerical expense by many orders of 
magnitude is large-eddy simulation, abbreviated as LES (Smagorinsky 1963; Lilly 
1967; Deardorff 1970). The technique’s history and development have been compiled 
in a monograph edited by Galperin & Orszag (1993). A critical review of the technique 
was given by Mason (1994). 

LES relies on both the Navier-Stokes equations and on a reasonable model for 
the small-scale turbulence. In LES the Navier-Stokes equations and the other 
diagnostic and prognostic equations are used in a spatially filtered form. Lilly (1967) 
used a three-dimensional top-hat filter. Leonard (1974) generalized the filtering 
concept. Moeng & Wyngaard (1988) compared ‘empirical’ spectra of the turbulent 
kinetic energy (TKE) generated in an LES with ‘theoretical’ TKE spectra that they 
obtained by applying the specific filter associated with their specific LES equations 
to Kolmogorov’s inertial-range TKE spectrum. But the theoretical spectra did not 
compare well with the empirical LES spectra. They presumed that the discrepancy 
might be to be attributed to the fact that the theoretical spectra were obtained 
by explicitly filtering while the empirical LES TKE spectra were the result of a 
filtering operation that is “to some extent implicit” (Moeng & Wyngaard 1988, 

It is the purpose of this paper to give an elementary physical picture of this ‘implicit’ 
filtering. To a certain extent, we adopt the philosophy which was described by Mason 
(1994). 

The paper is organized as follows. In $2, the difference between Navier-Stokes 
equations and LES equations is discussed. It is shown that LES equations may 
be considered equations of motion of specific hypothetical non-Newtonian turbulent 
fluids, called ‘LES fluids’. Section 3 contains the essence of this paper. Somewhat 
in analogy to Kolmogorov’s (19414 similarity theory, a similarity theory of locally 
homogeneous and isotropic turbulence generated by a finite-difference Smagorinsky- 
type LES is put forward. It is shown that the LES-generated Kolmogorov coefficient 
C X L E ~  is sensitive to the Smagorinsky coefficient cs if cs is smaller than Lilly’s (1967) 
value for cs; on the other hand, LxLES is asymptotically universal for cs larger than 
Lilly’s cs. The similarity theory is generalized to account for turbulence generated 
by an anisotropic-grid LES. In 54, some implications of the similarity theory are 
discussed. A summary and conclusions are given in $5. 

p. 3577). 
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2. The nature of the LES equations and the concept of LES fluids 
In this Section a physical interpretation of the nature of the LES equations will be 

given in some detail. It will be shown that the LES equations may be considered the 
equations of motion of specific hypothetical non-Newtonian turbulent fluids. These 
fluids will be called ‘LES fluids’. The concept of LES fluids is useful to get a physical 
picture of the similarity theory of LES-generated turbulence that will be put forward 
in this paper. 

2.1. Navier-Stokes equations and LES equations: the concept of LES j u i d s  
DNS is a numerical integration of the Navier-Stokes equations. If a turbulent flow 
at a high Reynolds number Re is to be modelled using DNS it must be guaranteed 
that the mesh width A of the numerical grid is smaller than the smallest curvature 
radii of the iso-surfaces of any physical quantity to be predicted by the DNS. It is 
generally accepted that this requirement is fulfilled if d is a few times smaller than 
Kolmogorov’s ( 1 9 4 1 ~ )  dissipation length 

114 

v = ( ’ >  , 

where v is the molecular kinematic viscosity and E the mean energy dissipation rate. 
It is known that the ratio of the outer scale of the turbulence L and the inner scale 

q depends on the turbulent Reynolds number R e :  

4 N (2.2) v 
Thus, DNS of a fully turbulent flow requires a number of grid points N that increases 
dramatically as a function of Re:  

3 

N - ( 4 )  - Re9I4, (2.3) 

see, e.g., Corrsin (1961). 
Large-eddy simulation (LES) is a technique that allows numerical simulation of 

turbulent flows for arbitrarily large Re. In contrast to DNS, in LES not all turbulent 
structures are resolved but only the ‘large’ eddies, i.e. those having length scales larger 
than a certain length lf. The ‘inner inertial range’, i.e. eddies having length scales 
between q and lf is parameterized. The length 1, is defined by the spatial filter that is 
applied to the Navier-Stokes equations in order to get a specific set of LES equations. 
Note that, like the Navier-Stokes equations, the LES equations are a priori partial 
differential equations. A numerical integration of the LES equations is called a LES. 

The LES equations contain a term zij that is physically interpreted as a Reynolds 
stress tensor that is variable in space and time. This tensor is to be parameterized 
in terms of the local instantaneous velocity field generated by the LES, and this is 
usually done on the basis of an eddy-viscosity hypothesis (Lilly 1967, p. 203; Leonard 
1974, p. 240): 

Here, vLES is a kinematic viscosity which is not constant but varies temporally and 
spatially and depends on the local and instantaneous ( a  priori spatially filtered) 
velocity field ui generated by the LES. Now, in order to close the LES equations an 
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additional equation is needed, namely the equation that allows the parameterization 
of VLES itself in terms of ui. 

A fluid in which the viscosity depends on the shear is a non-Newtonian fluid; 
therefore, the LES equations may be considered the equations of motion for a specific 
hypothetical non-Newtonian fluid. In the following, we will call such a hypothetical 
non-Newtonian fluid an ‘LES fluid’, which is physically specified by the equation for 
VLES or, more generally, by the parameterization of zi, in terms of the ui. 

The spatial filter that is inherent in the LES equations smears out the fluctuations 
that are considerably smaller than I f .  A physical interpretation is that the ‘small’ 
eddies are damped out by the eddy viscosity, which depends on (or defines) l f  and 
which is usually several orders of magnitude larger than the molecular viscosity v 
of the (Newtonian) fluid to be modelled. In other words l f  is a property of the 
specific LES fluid while the molecular viscosity is a property of a Newtonian fluid. 
While the smallest eddies in a fully turbulent Newtonian fluid are on the order of 
the dissipation length y, the size of the smallest eddies in a fully turbulent (non- 
Newtonian) LES fluid is on the order of the filter length I f .  One might presume 
that the role that y plays in Navier-Stokes turbulence is similar to that of l f  in LES 
turbulence. In the next Sections we will show in more detail that, in full analogy to 
the dissipation length y in a Newtonian fluid, l f  is physically a dissipation length in 
an LES fluid. 

The Navier-Stokes equations describe the energy dissipation of the turbulent 
kinetic energy due to the random motion of the molecules. The molecular motion 
itself, however, is not explicitly described but is parameterized. In other words the 
Navier-Stokes equations do not know anything about the existence of individual 
molecules; in a Navier-Stokes fluid (a fluid that is described by the Navier-Stokes 
equations), there are a priori no structures at length scales considerably smaller than 
y.  Even if it were possible to carry out a DNS with a grid spacing A smaller than the 
size of the molecules one could not expect that the DNS would provide insight into 
the existence of individual molecules. Correspondingly, the LES equations describe 
the energy dissipation of the large eddies due to the effects of the eddies smaller than 
l f .  The motion of the small eddies itself, however, is not explicitly described but is 
parameterized. In other words the LES equations do not know anything about the 
existence of individual eddies smaller than l f ,  i.e. of eddies within the inner inertial 
range; in an LES fluid, there are a priovi no structures at length scales considerably 
smaller than l f .  Even if a LES were carried out with A smaller than y one could not 
expect that the LES would resolve the eddies smaller than l f  if l f  is several orders of 
magnitude larger than y, which is usually the case. 

It is important to note that up to now we have considered partial differential 
equations (or finite-difference equations with an arbitrarily small A ) :  on the one hand 
the Navier-Stokes equations and on the other hand the LES equations. As stated 
above, in DNS d must be chosen equal to or smaller than a fraction of y since the 
size of the smallest nonlinear structures in a turbulent Newtonian fluid is on the order 
of q .  Correspondingly, in LES d must be chosen smaller than a critical length that is 
defined by If (Mason 1994, p. 5) .  

The LES technique was developed to minimize the computational expense of the 
simulation of turbulent flows with very high Reynolds numbers. Thus, there is 
generally a need to chose A as large as possible, and there is a need to know the 
critical A as precisely as possible. Note, however, that the need to maximize A 
is simply a consequence of limited computer resources. Thus, the grid spacing is 
maximized for technical reasons but not for physical reasons. 
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Obviously, the value of A must have an influence on the LES results if A is close to 
or even larger than the critical A ,  which depends on 1, since 1, defines the length scales 
of the smallest structures in the LES-generated velocity field. On the other hand, 
however, it is to be expected that for a given 1, the LES results will be insensitive to 
A if it is chosen considerably smaller than its critical value. 

In summary, we point out that it is very important to carefully distinguish between 
physically resolved length scales and numerically resolved length scales, and it is to 
be realized that the spatial filter defined by the model for zij has a priori nothing 
to do with the numerical grid that is used for the numerical integration of the LES 
equations. 

2.2. A specijic LES  fluid: the Smagorinsky ,fluid 
Following Smagorinsky (1963), Lilly (1967) suggested an eddy viscosity VLES that is 
proportional to the deformation tensor amplitude : 

where 

compare, for example, Leonard (1974), Schmidt & Schumann (1989), and Mason & 
Brown (1994). We call an LES fluid defined by (2.5) and (2.6) a ‘Smagorinsky fluid’ 
and the length 1s the ‘Smagorinsky length’. Usually, but not necessarily, I s  is stated in 
units of a grid spacing A ,  

1s = cs A ,  

where the numerical coefficient cs is known as the ‘Smagorinsky coefficient’ (e.g. 
Schmidt & Schumann 1989, p. 556) or the ‘Smagorinsky constant’ (e.g. Germano et 
al. 1991). It is to be emphasized, however, that there is no need to introduce a finite 
grid spacing A at this point. The coefficient cs has no physical relevance as long as 
the LES equations, which are a priori partial differential equations, are not replaced 
with their finite-difference counterparts. 

Obviously, ls defines the magnitude of vLES and simultaneously the magnitude of 
z I j .  Since, in turn, the parameterization of zi, in terms of ui defines the effective spatial 
filter associated with the LES equations the filter length l f  is defined by l s .  In the 
next Section, we will show that the Smagorinsky length ls is the Smagorinsky-fluid 
counterpart of the Navier-Stokes-fluid dissipation length q. 

3. Spectral analysis of homogeneous and isotropic LES-generated 
turbulence 

3.1. The eflective spatial Jilter 
There are two different interpretations of the nature of the spatial filter inherent in 
the LES equations. The traditional approach (Lilly 1967; Leonard 1974) is as follows. 
The Navier-Stokes equations are spatially filtered. The filter is explicitly defined and 
a priori known. The result are equations of motion, the form of which is “precisely 
that of the Navier-Stokes equations with ziJ replacing the viscous term” (Mason 1994, 
p. 3 ) .  Thus, the Reynolds stress tensor T~~ contains the full information concerning the 
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spatial filter. If z i j  is properly parameterized the LES will provide the TKE spectrum 

F(k )  = ~ i E ~ ’ ~ k - ~ ’ ~ A ~ ( k ) ,  (3.1) 

where A ( k )  is the transfer function which is the Fourier transform of the spatial 
filter function (Leonard 1974, equations 4.23 and 4.24; see also Moeng & Wyngaard 
1988, pp. 3574ff.). Since the filter is a priori known the transfer function and the 
LES-generated TKE spectrum are also a priori known. So far this is the traditional 
philosophy. 

An alternative interpretation has been given by Mason and his co-workers (Mason 
& Callen 1986; Mason & Brown 1994; Mason 1994). The pivotal issue is that in an 
LES z i j  is to be parameterized in terms of the filtered field variables, but the relation 
between z i j  and the filtered variables is not exactly known. The Smagorinsky-type 
parameterization, for example, is reasonable but nevertheless ad hoc. Mason (1994, 
p. 4): “Since the Smagorinsky model only involves a single scalar variable 10 [the 
Smagorinsky-length ts in the present paper] it is immediately apparent that, whatever 
the approach, only the characteristic scale of a filter can be represented. A key, but 
as yet unanswered, question is: what particular shape of filter operation does the 
Smagorinsky model correspond to?” 

We will not 
give a conclusive answer but we will see that the physical nature of this effective 
‘Smagorinsky-filter’ is similar to the ‘diffuse cutoff’ (Moeng & Wyngaard 1988, p. 3578) 
of the inertial-range TKE spectrum of Navier-Stokes turbulence at wavenumbers on 
the order of q-’. In the next subsection we interpret turbulence generated by a 
Smagorinsky-type LES as turbulence in a hypothetical Smagorinsky fluid and get 
some insight into the LES-generated (‘resolved-scale’) TKE spectrum by making use 
of a Kolmogorov-type dimensional analysis. 

This is the central question that the present paper deals with. 

3.2. Dimensional analysis of homogeneous and isotropic turbulence 

Assuming L+lS we postulate three similarity hypotheses for statistically isotropic and 
homogeneous turbulence generated by a cubic-grid LES that relies on a Smagorinsky- 
type parameterization of the Reynolds stress tensor: 

in a Smagorinsky jluid 

First similarity hypothesis: F (k )  is determined by E, 1s and A.  
Second similarity hypothesis : At wavenumbers k considerably smaller than l;’, F ( k )  

is determined by E and A but does not depend on 1s. 
Third similarity hypothesis: F(k)  is determined by E and I s  but does not depend on 

A if A is considerably smaller than ls. 
The first two hypotheses are similar to Kolmogorov’s (1941~) two hypotheses. The 

third hypothesis, however, is postulated because the LES equations are a priori partial 
differential equations and because it is to be expected that the numerical solution of 
these equations becomes asymptotically independent of A if A is chosen considerably 
smaller than a certain critical value (Mason 1994, pp. 7ff.). 

Defining the two dimensionless parameters 

and 
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and making use of the n-theorem (see, e.g., Gortler 1975 and the references cited 
by him) we find that in the general case the LES-generated TKE spectrum may be 
written 

F ( k )  = E2.’3k-5’3G(L’,, nl), (3.4) 

where G is a dimensionless function of two dimensionless variables. The inertial- 
range limit of G(nl,I12) is G(0,U2) and may be considered the LES counterpart of 
the Kolmogorov constant a :  

~ L E S ( C S )  = G(0, nz). (3.5) 

Note that in the general case the LES-generated Kolmogorov coefficient uLES is a 
function of cs. Introducing 

provides 

where 

for any value of cs. 

3.3. Lilly’s ( 1  967) assumptions considered from the viewpoint of the similarity theory 
Lilly’s (1967) well-known relationship between the Smagorinsky coefficient and the 
Kolmogorov constant cc can be rederived from the general LES TKE spectrum, (3.7), 
as follows. Lilly (1967) assumed 

and 

~ L E S ( C S )  = u, (3.10) 

where u is the quasi-universal Kolmogorov constant which is empirically known from 
real-world turbulence. Muschinski & Roth (1993) suggested a local effective cut- 
off wavenumber n / ( 2 z )  (where z is the distance from the surface) for surface-layer 
turbulence. Schumann (1994) pointed out that this cut-off wavenumber is closely 
related to Lilly’s (1967) cut-off wavenumber n/A for LES-generated turbulence. 

Making use of approximations for the ensemble averages r: and VLES in homogeneous 
LES turbulence, 

and 

(3.11) 

(3.12) 
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one obtains Lilly’s (1967) result 

c s = - ( l )  1 3a 3/4 . 
71 

(3.13) 

3.4. The nature of the Smagorinsky length 
The Smagorinsky length ls defines the magnitude of the variable kinematic viscosity 
of a fully turbulent Smagorinsky fluid, see (2.5). In analogy to Kolmogorov’s (1941~) 
dissipation length, (2.11, we define a dissipation length for a LES fluid: 

(3.14) 

Using (3.11) and (3.12) we obtain 

~ L E S  = CS A = 1s. (3.15) 

Thus, we have shown that the Smagorinsky-length is the dissipation length of the 
Smagorinsky-fluid, and we can rewrite (3.7): 

(3.16) 

3.5. Comparison with Kolmogorov’s (1 941 ,) similarity theory 
According to Kolmogorov’s (1941~) similarity theory, the three-dimensional TKE 
spectrum in locally homogeneous and isotropic fully developed turbulence is uniquely 
determined by the mean energy dissipation rate E and the molecular kinematic 
viscosity v :  

F(k) = aE2/3k-5/3 f (kv), (3.17) 

where 
1 i 4  

q =  (;) 
and 

limf(x) = 1. 
X 4  

(3.18) 

(3.19) 

In the early 1940s, it was pointed out by Landau that the spatial distribution of E 

should be taken into account in a reliable similarity theory for turbulence at high 
Reynolds numbers. This was done by Kolmogorov (19621, but the influence of the 
small-scale intermittency on the shape of the TKE spectrum has proved to be small. 
It is negligible in many applications. 

According to the third similarity hypothesis postulated above we expect for large 
Smagorinsky coefficients : 

It is tempting to presume 

lim ~ L E S ( C S )  a 
Cs+m 

(3.21) 

and 

(3.22) 
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where a is the quasi-universal Kolmogorov constant and f(x) the quasi-universal 
‘damping function’ for Navier-Stokes turbulence. In other words : one might presume 
that Kolmogorov’s (1941a) similarity theory not only holds for Navier-Stokes turbu- 
lence but also for turbulence generated by a Smagorinsky-type LES if cs is sufficiently 
large. 

This presumption appears to be justified if the details of the spatial and temporal 
distribution of vLES in a fully turbulent Smagorinsky fluid may be ignored and if its 
mean value is the important parameter that characterizes the TKE spectrum. Such 
a ‘vLEs-homogeneity assumption’ is encouraged by the success of the &-homogeneity 
assumption that Kolmogorov’s (19414 theory relies on. Moreover, the numerical 
experiments carried out by Bardina, Ferziger & Reynolds (1983) and by Mason & 
Brown (1994) may also be seen as an empirical verification of the unimportance of 
the details of the distribution of VLES in the case of homogeneous turbulence: “In 
the flow interior, it seems that only the mean value of the eddy-viscosity is at issue” 
(Mason & Brown 1994, p. 134). 

3.6. LES dissipation spectra 
The normalized dissipation spectrum is given by 

g L E S ( X ,  C S )  = X ’ / 3 f L E S ( X ,  C S ) ,  (3.23) 

where 

x = ~ L E S  (3.24) 

is the dimensionless wavenumber. Figure 1 shows three models for gLEs(x,cs) .  Two 
of the three curves correspond with the semi-empirical damping functions after 
Heisenberg (1948), 

(3.25) 

and Pa0 (1965), 

(3.26) 

respectively. We have assumed the standard value a = 1.5. Although the discussion 
about the definitive asymptotic form of f(x) for large x has not been settled (see, for 
example, Schumann 1994 and Saddoughi & Veerevalli 1994), the models by Heisen- 
berg (1948) and Pa0 (1965) are used here since they fulfil the accuracy requirements 
that are appropriate in the present context. 

The third curve in figure 1 is the dissipation spectrum that follows from Lilly’s 
(1967) model, see (3.13) and (3.9): 

i a  413 
f P ( X )  = exp (-yx ) , 

where 
314 

xs = (i) 
(3.27) 

(3.28) 

is the dimensionless cut-off wavenumber according to Lilly (1967). In figure 1, CI = 1.5 
has been assumed for Lilly’s dissipation spectrum also. 
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1.2 

0.9 

- . - - . - . - - . - - -  
I , ‘  I ,  , I  

- 

3.7. The LES-generated Kolmogorov coeficient as a function of 

Now we derive the LES-generated Kolmogorov coefficient as a function of the 
Smagorinsky coefficient. Combining (3.1 1) and (3.12) yields 

the Smagorinsky coeficient 

E = ( c s A ) ~  (2 I“ F(k)k2dk) 3 i 2 .  

Inserting (3.7) and resolving for RLES leads to 

where 

x = kls = kcsA. 

(3.29) 

(3.30) 

(3.31) 

A simple model for ~ L E S ( X ,  cs) is the large-cs limit, limes+oo ~ L E S ( X ,  CS), cut-off at 

X, = kscS A = ZCS. (3.32) 

Such a cut-off has already been suggested by Lilly (1967) but simultaneously he made 
use of the crude assumption f(x) = 1. Assuming Kolmogorov’s (1941~) universal 
damping function, f(x), as the large-cs limit of ~ L E S ( X ,  CS), see (3.22), we obtain 

(3.33) 

It is easy to verify Lilly’s a-cs-relationship, (3.13), for f (x) = 1. 
As two more precise models for f(x), which take the decoupling of aLES from cs for 

large cs into account (which Lilly’s model does not), we suggest the above-mentioned 
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models by Heisenberg (1948) and Pao (1965). Inserting Heisenberg’s model, (3.25), 
into (3.33) reveals a model for aLEs(cS) in closed form. After solving the integral and 
after some elementary manipulations we obtain 

(3.34) 

This result and the alternative model for c ( L E S ( C S )  which relies on Pao’s (1965) model 
will be discussed in $4. 

3.8. Dimensional analysis of homogeneous and isotropic turbulence generated 

Consider a finite-difference Smagorinsky-type LES with an anisotropic grid. Let A 1, 
A 2  and A 3  be the three grid spacings, where 

A I  ,< A2 ,< A3. (3.35) 

We modify the similarity theory described above in order to account for anisotropic 
grids. Assuming again L+ls we postulate: 

with an anisotropic-grid LES 

First similarity hypothesis: F ( k )  is determined by E, I S ,  A , ,  A 2 ,  and A3. 
Second similarity hypothesis: At wavenumbers k considerably smaller than l;’, F ( k )  

Third similarity hypothesis: F ( k )  is determined by E and I s  but does not depend on 
is determined by 8, A , ,  A 2 ,  and 43 but does not depend on 1s. 

A , ,  A 2 ,  and A ,  if A l ,  A 2 ,  and A 3  are considerably smaller than 1s. 
We define four dimensionless variables : 

I71 = k l s ,  (3.36) 

and 

(3.37) 

(3.38) 

(3.39) 

where 

AD = ( A ,  A2A3)’ /3  (3.40) 

is a measure for the grid spacing as used by Deardorff (19701, and where a1 and a2 
are ‘aspect ratios’ that quantify the anisotropy of the grid (Scotti, Meneveau & Lilly 
1993). The Il-theorem leads to 

F ( k )  = :2/3k-5/3G,(ni,n2,n3,114) (3.41) 

where G, is a dimensionless function of four dimensionless variables. The suffix a 
stands for anisotropic. 

We normalize G,(nl, n2, n3, n4) with the inertial-range limit, G,(O, II2 ,  n3, n4), and 
get 

(3.42) 
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G,(0,f72,n,,n4) is the LES-generated Kolmogorov coefficient in the case of an 
anisotropic grid, and it is appropriate to express it in terms of the LES-generated 
Kolmogorov coefficient in the case of an isotropic grid and an ‘anisotropy factor’ Pa 
which depends in the general case on CS, a1 and a2: 

~LES(CS)P~(CS, ai, a21 = GJO, n2, n3, n4). (3.44) 

B a ( C s ,  41) = 1. (3.45) 

In the case of an isotropic grid we have 

Scotti et al. (1993) generalized Lilly’s (1967) analysis for an anisotropic grid, assum- 
ing a three-dimensional anisotropic cut-off filter defined by three different cut-off 
wavenumbers, corresponding with the three different grid spacings. Moreover, they 
assumed 

~LES(CS)P~(CS, ai, a21 = a (3.46) 

and obtained cs as a function of the empirical Kolmogorov constant a and of the 
grid aspect ratios a1 and a2. 

Finally we consider the case that A l ,  A 2 ,  and A3 are considerably smaller than E s .  
Then, according to the third similarity hypothesis, aL~s(cS) is equal to the isotropic 
large-cs limit, and Pa(cs,a1,a2) = 1 even for an anisotropic-grid LES. 

It seems possible that dimensional analysis can lead to further insight into the 
asymptotic behaviour of the anisotropy function Pa(cs, al,  a2) for various limits of CS, 

al, and a2. I believe in this case, instead of making use of cs, a l ,  and a2, it would be 
more appropriate to introduce three different Smagorinsky coefficients cs1 = Zs/d 1, 

cs2 = ls/A2, and cs3 = l s / A 3 .  As one of the reviewers pointed out, it would be 
of interest to consider the case that one (two) of the three Smagorinsky coefficients 
is (are) small and two (one) are (is) large. A detailed discussion of this problem, 
however, is beyond the scope of this paper. 

4. Discussion 
4.1. The relevance of the Smagorinsky coeficient for the LES-generated TKE 

Figure 1 shows clearly the difference between LES with a small cs and a LES with 
a large cS. The dissipation spectra g H ( x )  and g p ( x )  have maxima at wavenumbers x 
about half the cut-off wavenumber x, suggested by Lilly (1967), indicating insensitivity 
of the TKE budget of the LES-generated turbulence if x, is chosen considerably larger 
than Lilly’s x,. The maximum of Lilly’s crude cut-off dissipation spectrum, gL(x), 
however, is at xs, implying a priori a coupling between the TKE budget and both the 
magnitude of the cut-off wavenumber and of the grid spacing A .  

Figure 2 shows several models for C I L E S ( C S ) .  The solid lines represent C I L E S ( C S )  

obtained from inserting f L ( x ) ,  f H ( x ) ,  and f p ( x ) ,  respectively, into Eq. (3.33). The 
dashed line marks the value of limcs+co(aLES), which has ad hoc been assumed to 
be 1.5. Since Lilly’s (1967) model assumes a cut-off of the spectrum at the largest 
wavenumber resolvable by the grid, it is a priori clear that it fails for larger C S ,  i.e. 
in the case of a decoupling of the LES turbulence from the numerics. Note that 

spectrum and the LES-generated Kolmogorov coeficient 
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CS 

FIGURE 2. Models for the Kolmogorov coefficient C ( ~ E S  generated by a Smagorinsky-type LES as a 
function of the Smagorinsky coefficient cs. The three solid curves show CILES(CS) according to Lilly 
(1967) and two models for aLEs(cS) that rely on the spectral models by Heisenberg (1948) and Pao 
(1965), respectively. For the asymptotic value, lim,.s,x zLES (cs) 1.5 has been assumed (dashed line). 

the Lilly asymptote and the (constant) large-cs asymptote intersect exactly at Lilly’s 
(1967) value for cs. Thus, Lilly’s (1967) cs may be considered a critical cs. 

Both Pao’s (1965) and Heisenberg’s (1948) models also imply a systematic overes- 
timation of aLES for cs larger than 0.2 if the energy at the smallest grid scales is not 
artificially removed. Pao’s (1965) model leads to a larger predicted overestimation 
than Heisenberg’s (1948) because the ‘diffuse cut-off’ of the TKE spectrum according 
to Pao’s model is more diffuse than that according to Heisenberg’s model, see figure 1. 
For lim,,,,(aLES) = 1.5 and cs = 0.2 we obtain XLES = 1.74 (16% overestimation) 
from Heisenberg’s model and XLES = 2.14 (43% overestimation) from Pao’s model. A 
possible intrinsic overestimation of LES-generated Kolmogorov coefficients has been 
reported by Chasnov (1991): “ ... it appears that the value of K O  [CILES in the present 
paper] obtained from numerical simulations is approximately 30% higher than that 
obtained in high Reynolds number atmospheric experiments. The origin of this dis- 
crepancy remains to be understood.” Chasnov (1991) tested a possible cut-off effect 
by comparing a 643 run with a 12S3 run and obtained an even slightly larger ~ L E S  for 
the 12S3 run than for the 643 run, which seems to exclude that the overestimation is 
to be attributed to a truncation effect. On the other hand, the physics of Chasnov’s 
spectral wavenumber-space LES, which is based on a spectral subfilter closure, is 
different from the physics of a basic finite-difference Smagorinsky-type LES, which is 
carried out in physical space. Hence, the reliability of a direct comparison between 
Chasnov’s results and results expected for the basic Smagorinsky-type LES, might be 
doubtful. 

In most LES applications, values for cs between 0.1 and 0.2 have been used. These 
values are fairly close to Lilly’s (1967) value, which marks the intermediate range 
between the small-cs asymptote and the large-cs asymptote. Using a cs in the inter- 
mediate range has three practical advantages : first, the LES-generated Kolmogorov 
coefficient is not very sensitive to cs ; second, the LES-generated Kolmogorov coeffi- 
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cient is expected to be not too far from the quasi-universal Kolmogorov coefficient a; 
third, the numerical expense of the LES is minimized. 

For large values of cs the length scale defined by the model for zij (and not the 
grid spacing) determines the width of the effective spatial filter. For small values 
of cs, however, the effective spatial filter is determined by the numerical grid. In a 
smal lq  LES, the grid spacing A plays the role of the transport length that determines 
the magnitude of the effective subfilter viscosity. In the intermediate range, i.e. at 
Smagorinsky coefficients close to Lilly’s (1967) value, obviously both the numerical 
grid and the zij closure determine the effective spatial filter. Thus, in an intermediate- 
cs LES the nature of the turbulent motions at the smallest scales is ambiguous. The 
physical properties are defined at distinct points, namely at the grid points. One might 
speculate that for small and intermediate values of cs the dynamics of the velocity 
fluctuations at scales comparable with the grid spacing is somewhat similar to the 
microphysical dynamics of a solid at the smallest scales. 

The grid spacing may be considered the LES-fluid counterpart of the mean free 
path in a gaseous Navier-Stokes fluid. Tennekes & Lumley (1972, p. 23) called the 
ratio between the mean free path and the dissipation length, 

A 

r K n ,  = -, 

a “microstructure Knudsen number”. It is generally expected that turbulence can be 
properly described within the framework of continuum mechanics as long as K n, is 
smaller than 1. The LES-fluid counterpart of K n ,  is 

Thus, the Smagorinsky coefficient is physically the reciprocal of a microstructure 
Knudsen number (or a ‘grid Knudsen number’). Mason (1994, p. 8), however, 
considers cs the reciprocal of the square root of a “mesh Reynolds number”. 

Figure 2 indicates that the overestimation becomes negligible for cs larger than 
about 0.5. Experimentalists (see 
Kutznetsov, Praskovsky & Sabelnikov 1992, p. 602) have recommended using a wire 
length L (which defines the spatial resolution in hot-wire anemometry) smaller than 
217 for investigations of fully developed turbulence. Since ls is the Smagorinsky- 
fluid counterpart of 7 the requirement cs <0.5 is the Smagorinsky-fluid counterpart 
of the requirement L<2y. This analogy may be seen as a further indication for 
the reasonableness of the presumption that there is a similarity between the ‘diffuse 
cut-offs’ in Smagorinsky-fluid turbulence and in real-world turbulence. 

This is equivalent to the requirement A<21~. 

4.2. Subgrid scales, subfilter scales, and resolved scales 
It is worthwhile to look more closely at the different terminologies used by the different 
authors. Most researchers in the LES community (see, e.g., Deardorff 1980; Moeng 
& Wyngaard 1988; Schmidt & Schumann 1989; Kaltenbach, Gerz & Schumann 
1994) use the term ‘subgrid scales’. Mason and his co-workers (see, e.g., Mason 1994; 
Mason & Brown 1994), however, prefer the term ‘subfilter scales’. A third notion is 
‘resolved scales’. What is the difference between these terminologies? Here I suggest 
a definition. 
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Subgrid scales are length scales that cannot be resolved by the numerical grid, i.e. 
length scales smaller than 

A, = 24, (4.3) 
where d is the grid spacing. The factor 2 is due to the sampling theorem. 

A precise definition for the subfilter scales is more problematic. Consider a large-cs 
LES. There is a length scale Af at which the LES-generated three-dimensional TKE 
spectrum drops off significantly in comparison with the inertial-range k-5/3-spectrum. 
If we define a decrease by a factor e = 2.7181 ... as significant and if we assume Pao’s 
(1965) spectrum as a reasonable approximation for the postulated universal TKE 
spectrum of turbulence generated by a large-cs LES, A f  is approximately given by 

exp (-px;/3) 3 = - 1 
e’ 

where 

(4.4) 

We have shown that in the case of the Smagorinsky-type eddy-viscosity parameteri- 
zation ~ L E S  is given by 

V L E S  = c s 4  (4.6) 
and it follows that 

314 

Af = 271 cs ( :a )  A .  

Inserting Lilly’s value of the Smagorinsky coefficient, 

see (3.13), leads to 

(4.7) 

Thus, subfilter scales may be considered length scales smaller than lf. Obviously, 
l f  equals A, if Lilly’s value for the Smagorinsky coefficient is used. In this case the 
terms subfilter and subgrid may be considered synomous. Using a ‘non-optimal’, i.e. 
a larger value of cs, however, leads to Af>R,. In this case a length scale A larger than 
A, but smaller than Af can be numerically resolved but not physically. This is the case 
in a large-cs LES. Thus, it is necessary to distinguish carefully between ‘physically 
resolved scales’ and ‘numerically resolved scales’. 

4.3. Non-homogeneous LES turbulence 
The main purpose of LES is to model turbulence under real conditions. Real 
turbulence is often inhomogeneous owing to rigid boundaries or to stable stratification. 
Thus, it is very important to establish the reliability of the LES technique for non- 
homogeneous conditions. Recently, encouraging results of LES of a neutrally stratified 
boundary layer (Andren et al. 1994) and even of stably stratified flows (Kaltenbach 
et al. 1994; Schumann & Gerz 1995) have been published. 

A ‘dynamic’ subgrid model has been developed (German0 et al. 1991) that allows 
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more of the information about the local and instantaneous state of the flow at the 
smallest resolved scales to be used in order to account for anisotropy at these scales. 
This procedure results in a locally and temporally changing Smagorinsky coefficient 
cs. The utility of Germano et d ’ s  (1991) model has been called in question by Mason 
(1994). On the other hand, Kaltenbach et a!. (1994, pp. 26 ff.) are in agreement with 
Germano et al.’s procedure: “Our simulations lack an inertial subrange which can 
hardly be obtained unless the resolution is much finer than we were able to provide. 
A common practice in LES of a wide variety of flows is to account for the lack of 
an inertial subrange by adjusting CSGS [CS in the terminology of the present paper] 
in such a manner that energy is dissipated at a sufficient rate.” ‘Dynamic’ models 
might be the only way to guarantee the applicability of the LES technique in the case 
of stably stratified turbulence if the turbulence is anisotropic at all resolved length 
scales. But such procedures are not quite satisfactory. Making use of them seems to 
be a step backwards from the original concept of LES since a major advantage of 
the LES technique lies in its conceptual simplicity. 

Even worse than in the presence of stably stratified regions is the situation in the 
vicinity of rigid boundaries: “It is disappointing to find that the boundary regions in 
large-eddy simulations contain serious errors. This cannot, however, be considered too 
surprising, as close to the surface the potential rationality of the large-eddy simulation 
vanishes as the dominant eddy-scales become comparable with, and smaller than, the 
filter-scale’’ (Mason 1994, p. 17). 

Generally a Smagorinsky-type LES is expected to be successful if the flow is fully 
turbulent, if the length 1s is always significantly smaller than the local outer scale 
and larger than the local inner scale of the turbulence to be modelled, and if the 
turbulence to be modelled is statistically isotropic at length scales comparable with 
ls. Since the outer scales are drastically reduced in regions with high static stability, 
realistic LES of flows under these conditions require a considerably smaller 1s than, 
for example, an LES of a convective boundary layer. 

Recently, subfilter models have been developed which take into account backscatter 
of subfilter energy into the resolved-scale regime and reduce the intrinsic determinism 
of the basic Smagorinsky model by introducing a stochastic force at the smallest 
resolvable scales (see, e.g., Mason & Thomson 1992; Mason 1994; Schumann 1995). 
A further subfilter model is the structure function model put forward by Mitais & 
Lesieur (1992). 

However, an interpretation of the relationships between the concepts developed in 
the present paper, which rely on classical models of homogeneous turbulence, and 
the more sophisticated subfilter closures mentioned above is not given here. 

4.4. Intermittency and Reynolds-number similarity 
Another problem of the LES technique is the effective Reynolds number of the LES- 
generated turbulence. In LES the dissipation length q of the real-world turbulence is 
replaced with ~ L E S  = csd. Thus, 

(4.10) 

may be defined as the turbulent Reynolds number of LES-generated turbulence, 
where Re is the Reynolds number of the real-world turbulence to be simulated by the 
LES, see $2. In the atmospheric boundary layer, q is on the order of 1 cm but ~ L E S  is 
usually chosen on the order of 10 m. In this case ReLEs is about lo4 times smaller than 
the Reynolds number Re of the turbulence to be modelled. One must be careful that 
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ReLEs remains sufficiently large. Otherwise the Reynolds number similarity might not 
be fulfilled, and the LES results could not be considered representative for a large-Re 
flow (see, e.g., Moeng & Wyngaard 1988). 

It is known, however, that some statistical properties of fully developed turbulence 
are not independent of the Reynolds number even at very large Re, i.e. even if 
the Reynolds number similarity is to be expected to be guaranteed. Wyngaard & 
Tennekes (1970) observed that the skewness and kurtosis of the first derivative of the 
streamwise velocity component depend on Re. The 4/3-ratio between longitudinal and 
transversal velocity correlations that is expected from the classical theory (equation 
24 in Kolmogorov 1941~)  has been observed. See, e.g., Hauf (1984). Mestayer 
(1982), however, reported experiments that did not give support to the theoretical 
4/3-ratio. Also the LES results by Moeng & Wyngaard (1988) did not reproduce 
the theoretical value, compare also Schmidt & Schumann (1989, p. 528). Mestayer 
suggested that the 4/3-ratio is to be expected mainly at the small-scale regime of 
the inertial subrange. This implies that the existence of a 4/3-ratio depends on 
the Reynolds number. Another Reynolds-number dependency has been suggested 
by Oncley et al. (1990). They found empirically a relation between von Karmin’s 
constant K and the roughness Reynolds number, leading to a smaller IC for smooth 
terrain than for rough terrain. 

Moeng & Wyngaard (1988) considered the influence of the spatial fluctuations of 
LES-generated energy dissipation E on the TKE budget and pointed out that the 
LES-generated Kolmogorov coefficient depends on the width of the E distribution. It 
seems that the small-scale intermittency of LES-generated turbulence is an important 
effect at least for simulations of the convective boundary layer. 

Recently, Schumann (1995) investigated LES-generated turbulence for three differ- 
ent values of cs:  0.083, 0.165 and 0.330. While cs = 0.165 (which corresponds to 
Lilly’s cs for 2 = 1.6) led to a realistic inertial-range spectrum with a ~ ~ s c 1 . 6  (see 
Erratum to Schumann 1995) the doubled and halved cs provided unrealistic spectra 
(Schumann 1995, p. 311). This appears to be incompatible with the presumption that 
the LES results are asymptotically independent of cs if c g  is chosen larger than Lilly’s 
cs-value (see figure 2). Here I suggest a possible explanation of Schumann’s (1995) 
finding. Let N be the number of the grid points in one dimension. For simplicity 
we identify the side length L of a cubic modelled volume with the outer scale of the 
LES-generated turbulence. Then we have 

and finally 

(4.1 1) 

(4.12) 

Thus, ReLEs is reduced if cs is enlarged and vice versa, provided that N is kept 
constant. The number of grid points in Schumann’s (1995) LES was N = 64, 
corresponding to ReLEs = 7069 (2823, 1122) for cs = 0.083 (0.165,0.330). These values 
for ReLEs are not very large, and a violation of the Reynolds-number similarity seems 
possible. It is to be expected that there is a critical ReLEs and that the Smagorinsky 
fluid is not fully turbulent if ReLEs is smaller than this critical value. In this case, 
LES cannot generate an inertial-range spectrum. Possibly, ReLEs = 1122 is below 
this critical value. It would be of great interest to test the cs-sensitivity of a basic 
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FIGURE 3. Qualitative picture of the expected behaviour of CLLES(CS) for finite LES Reynolds numbers 
ReLEs, i.e. for finite numbers of grid points N ,  where N1 < N2 < N3 < .... Note the expected plateau 
for large grids and the similarity to Lilly’s (1967) CLLES(CS) model for small grids. 

Smagorinsky-type LES without changing simultaneously the value of R e L E s .  This can 
be done by varying N proportionally to cs ; in other words A has to be varied while 
L and 1s have to be kept constant. 

Figure 3 shows qualitatively CILES(CS) which is to be expected for different values 
of N where N1 < N2 < N3 < .... For a given N it is to be expected that C I L ~ S ( C ~ )  

drops off beyond a critical c$ which is related to the critical LES Reynolds number 
Re:,, (which is expected to be not universal but to depend on the type of the flow) 
as follows: 

cg = N . (4.13) 

It is to be expected that for small N there is no plateau between Lilly’s cs (the critical 
cs for discretization errors) and c$ (the critical cs associated with the critical Reynolds 
number of the LES fluid). Such a plateau, however, is to be expected for larger N .  
In present-day LES we have N = 100, and it is possible that the expected plateau of 
C I ~ ~ ~ ( C S )  cannot be observed with such small values of N .  Note that C I ~ ~ ~ ( C ~ )  for a 
small N (see figure 3) exhibits some similarity with Lilly’s (1967) model for CILES(CS), 

see figure 2. This similarity, however, appears to be just a misleading coincidence. 

5. Summary and conclusions 
Mason and his co-workers (Mason & Callen 1986; Mason 1994; Mason & Brown 

1994) have pointed out that the effective spatial filter of an LES is not defined by the 
‘conceptual’ filter that is applied to the Navier-Stokes equations in order to get the 
(continuous) LES equations. Neither is the filter determined by the numerical grid, 
provided the grid spacing is sufficiently small in comparison with the width of the 
‘conceptual’ filter. Rather, the effective spatial filter is defined by the closure for the 
subfilter turbulence. The filter shape associated with the widely used Smagorinsky-type 
subfilter model, however, is unknown (Mason 1994). Mason’s philosophy contrasts 
somewhat with the traditional philosophy (Lilly 1967; Leonard 1974), which assumes 
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that the subfilter closure is a priori determined by the conceptual filter and that the 
width of the conceptual filter is simultaneously the grid spacing. 

In the present paper, the LES equations have been considered equations of motion 
of specific hypothetical turbulent non-Newtonian fluids, called LES fluids. The 
Smagorinsky-fluid is by definition the LES fluid that is specified by the Smagorinsky- 
type subfilter closure. A Kolmogorov-type similarity theory has been suggested which 
leads for very large LES Reynolds numbers to the TKE spectrum 

F ( k  1 = ~ L E S ( C S  )C f L E S ( x ,  CS), (5.1) -213k-513 

where fLES(x, cs) is a dimensionless function of the dimensionless wavenumber x = kls.  
Here, cs is the Smagorinsky coefficient and 1s = csd  is the Smagorinsky length which 
scales the magnitude of the variable viscosity vLES. d is the mesh width (or in the 
case of anisotropic grid a measure of the mesh width). 

The effective spatial filter is specified by the dimensionless function fLES(X, cs). 
From the Leonard (1974) point of view fLEs(kEs,cs) is A2(k)  where A ( k )  is the Fourier 
transform of the conceptual filter. The key hypothesis of the present paper, however, 
is that the asymptote of fLES(k&,(.S) for large cs is physically the Smagorinsky-fluid 
counterpart of Kolmogorov’s ( 1941a) damping-function f ( x )  which describes the 
drop-off of the TKE spectrum at wavenumbers in the vicinity of q-’. This hypothesis 
is encouraged by the physical equivalence of ls and Kolmogorov’s dissipation length 
q ,  which is shown by using Lilly’s (1967) approximations for the ensemble averages 
E and E. One of the anonymous reviewers remarked that the pivotal issue in this 
paper is the assumption that for homogeneous LES-generated turbulence the eddy 
viscosity can be replaced with a constant viscosity. It is clear that this assumption 
is closely related to the hypothesis of the equivalence of limcs+s(fLES(kls, CS)) and 
f ( k q ) .  But the ‘equivalence hypothesis’ appears to be more general since it implies 
that Kolmogorov’s (19414 similarity does not hold only for turbulent Navier-Stokes 
fluids but also for a certain (but up to now not specified) class of turbulent non- 
Newtonian fluids. In this respect, the concept of LES fluids seems reasonable, and it 
might be useful for defining alternative subfilter closures. 

If Mason is right in saying that for homogeneous turbulence LES provides similar 
results to DNS with a constant (properly defined) viscosity, what is the advantage 
of LES compared with DNS? Both LES and DNS provide spatial and temporal 
distributions of energy dissipation rates, variances, and fluxes. However, there is 
a decisive difference: while in a Navier-Stokes fluid the viscosity is the material 
parameter and the dissipation length is variable, in a Smagorinsky fluid the dissipation 
length is the material parameter and the viscosity is variable. Thus, replacing a 
turbulent Navier-Stokes fluid with an equivalent turbulent LES fluid allows simulation 
of turbulence at arbitrarily large Reynolds numbers by making optimal use of the 
limited wavenumber-space regime that can be represented by a finite numerical 
grid. 

We have combined Lilly’s (1967) cut-off approximation with two classical dissipation 
-range models (Heisenberg 1948; Pa0 1965). The combined models predict an intrin- 
sic overestimation of the LES-generated Kolmogorov coefficient for finite values of 
cs. For cs = 0.2 we obtain 16% overestimation from Heisenberg’s (1948) model and 
43% from Pao’s (1965) model. The predicted overestimation becomes negligible for 
values of cs beyond about 0.5. In other words both models predict non-negligible 
finite-difference-approximation errors for cs smaller than about 0.5. It has been shown 
that the requirement cs>0.5 is equivalent to the requirement L<2y ( L  is the wire 
length of a hot-wire anemometer) which has been recommended by experimentalists. 
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It has been pointed out that for a constant number of grid points N an enlargement 
of cS implies a reduction of the LES Reynolds number ReLEs, and it is to be expected 
that for a finite N there is a critical value for cs associated with a critical ReLES.  Thus, 
for any finite N there are two critical Smagorinsky coefficients: first Lilly’s (1967) C S ,  

indicating for which values of cs finite-difference-approximation errors are important, 
and second a critical cs beyond which the Reynolds similarity is violated. Reasonable 
LES results are to be expected if cs is chosen not smaller than the first and not larger 
than the second critical Smagorinsky coefficient. 

There appears to be a lack of a systematic study of homogeneous turbulence 
generated by a basic Smagorinsky-type finite-difference LES for different values of 
cs (between, say, 0.2 and 1.0) without changing simultaneously the LES Reynolds 
number. Such numerical experiments could empirically provide the function ~ L E S ( X ,  cs) 
and the LES-generated Kolmogorov-coefficient CLLES(CS). While it is to be expected 
that f L ~ s ( x , c S )  and aLES(cS) are not universal for small and intermediate cs but 
rather depend on the specific finite-difference-approximation scheme, it would be 
of great interest to get insight into the asymptotic shape of the Smagorinsky filter, 
limcs+03 fLEs(x, cs), and to determine the asymptotic value limcs+m CLLES(CS), i.e. the 
Kolmogorov coefficient for continuous Smagorinsky turbulence. 

I thank P. J. Mason and U. Schumann for their valuable comments on earlier 
versions of this paper. Thanks also to R. Blender, P. Chilson, S. Raasch, V. Schilling, 
and Z. Sorbjan for helpful discussions and comments. I appreciate the valuable 
comments by three anonymous reviewers, and I would like to give thanks to F. 
Herbert and F. Fiedler who invited me to seminar talks in Frankfurt and Karlsruhe, 
respectively, on the topic of this paper, giving me the occasion to discuss my results. 
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